Calculating the Distance

Each question shows the average speed (km/h) followed by the duration (in hours) of a journey. For each question, calculate the distance travelled in km. Then use the key to shade the section in the correct colour.

For example, ‘50, 0.5’ would mean that the average speed was $50 \mathrm{~km} / \mathrm{h}$ and the duration was 0.5 hours. To find the distance travelled, we would calculate 50×0.5, giving us 25 km . We would colour this section in red, according to the key below.

Red	$1 \leq d<30$
Green	$30 \leq d<50$
Yellow	$50 \leq d<70$
Light Blue	$70 \leq d<120$
White	$120 \leq d \leq 160$

Calculating the Distance Answers

Each question shows the average speed (km / h) followed by the duration (in hours) of a journey. For each question, calculate the distance travelled in km. Then use the key to shade the section in the correct colour.
For example, ‘50, 0.5’ would mean that the average speed was $50 \mathrm{~km} / \mathrm{h}$ and the duration was 0.5 hours. To find the distance travelled, we would calculate 50×0.5, giving us 25 km . We would colour this section in red, according to the key below.

Red	$1 \leq d<30$
Green	$30 \leq d<50$
Yellow	$50 \leq d<70$
Light Blue	$70 \leq d<120$
White	$120 \leq d \leq 160$

Calculating the Speed

Each question shows the distance travelled (km) followed by the duration (in hours) of a journey. For each question, calculate the average speed in km / h. Then use the key to shade the section in the correct colour.
For example, ‘50, 0.5’ would mean that the distance travelled was 50 km and the duration was 0.5 hours. To find the distance travelled, we would calculate $50 \div 0.5$, giving us $100 \mathrm{~km} / \mathrm{h}$. We would colour this section in light blue,
according to the key below.

Red	$1 \leq s<30$
Green	$30 \leq s<50$
Yellow	$50 \leq s<70$
Light Blue	$70 \leq s<120$
White	$120 \leq s \leq 160$

Calculating the Speed Answers

Each question shows the distance travelled (km) followed by the duration (in hours) of a journey. For each question, calculate the average speed in km/h. Then use the key to shade the section in the correct colour.
For example, ‘50, 0.5’ would mean that the distance travelled was 50 km and the duration was 0.5 hours. To find the distance travelled, we would calculate $50 \div 0.5$, giving us $100 \mathrm{~km} / \mathrm{h}$. We would colour this section in light blue, according to the key below.

Red	$1 \leq s<30$
Green	$30 \leq s<50$
Yellow	$50 \leq s<70$
Light Blue	$70 \leq s<120$
White	$120 \leq s \leq 160$

Each question shows the distance (km) followed by the average speed (km/h) of a journey. For each question, calculate the time taken in hours. Then use the key to shade the section in the correct colour.

For example, '40, 50' would mean that the distance was 40km and the average speed was $50 \mathrm{~km} / \mathrm{h}$. To find the time taken, we would calculate $40 \div 50$, giving us 0.8 hours. We would colour this section in red, according to the key below.

Red	$0<t<1$
Green	$1 \leq t<3$
Yellow	$3 \leq t<5$
Light Blue	$5 \leq t<20$
White	$20 \leq t \leq 30$

Regent Studies | www.regentstudies.com

Calculating the Time Answers

Each question shows the distance (km) followed by the average speed (km/h) of a journey. For each question, calculate the time taken in hours. Then use the key to shade the section in the correct colour.

For example, '40, 50' would mean that the distance was 40 km and the average speed was $50 \mathrm{~km} / \mathrm{h}$. To find the time taken, we would calculate $40 \div 50$, giving us 0.8 hours. We would colour this section in red, according to the key below.

Red	$0<t<1$
Green	$1 \leq t<3$
Yellow	$3 \leq t<5$
Light Blue	$5 \leq t<20$
White	$20 \leq t \leq 30$

Famous Mathematicians Top Maths Card Game Converting Units of Measure Answers

Bronze Cards	Pythagoras	Blaise Pascal	Fibonacci	Archimedes	Alan Turing	Ada Lovelace
A	$10 \mathrm{~mm}=1 \mathrm{~cm}$	$100 \mathrm{~cm}=1 \mathrm{~m}$	$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~km}=\mathbf{1 0 0 0 0 0} \mathrm{cm}$	$100 \mathrm{~mm}=10 \mathrm{~cm}$	$100 \mathrm{~m}=10 \mathbf{0 0 0} \mathrm{~cm}$
B	$500 \mathrm{~g}=0.5 \mathrm{~kg}$	$1000 \mathrm{~g}=1 \mathrm{~kg}$	$3 \mathrm{~kg}=3000 \mathrm{~g}$	$10 \mathrm{~kg}=10$ 000g	$1 \mathrm{~g}=1000 \mathrm{mg}$	2000mg $=2 \mathrm{~g}$
C	$5 \mathrm{l}=\mathbf{5 0 0 0} \mathrm{ml}$	$10 \mathrm{l}=10 \mathbf{0 0 0} \mathrm{ml}$	$3000 \mathrm{ml}=31$	$6500 \mathrm{ml}=6.51$	$21=200 \mathrm{cl}$	500cl $=501$
D	5 miles $\approx 8 \mathrm{~km}$	1 foot $\approx 30 \mathrm{~cm}$	$1 \mathrm{~m} \approx 40$ inches	$1 \mathrm{inch} \approx 2.5 \mathrm{~cm}$	120 minutes $=\mathbf{2}$ hours	300 seconds $=5$ minutes

Silver Cards	Pythagoras	Blaise Pascal	Fibonacci	Archimedes	Alan Turing	Ada Lovelace
A	$50 \mathrm{~mm}=5 \mathrm{~cm}$	$800 \mathrm{~cm}=8 \mathrm{~m}$	$10 \mathrm{~km}=10000 \mathrm{~m}$	$5 \mathrm{~km}=\mathbf{5 0 0} \mathbf{0 0 0} \mathrm{cm}$	$80 \mathrm{~mm}=8 \mathrm{~cm}$	$12 \mathrm{~m}=\mathbf{1 2 0 0} \mathrm{cm}$
B	$1.05 \mathrm{~kg}=1050 \mathrm{~g}$	$3 \mathrm{~g}=0.003 \mathrm{~kg}$	$5370 \mathrm{~g}=5.37 \mathrm{~kg}$	$8.4 \mathrm{~kg}=8400 \mathrm{~g}$	$5 \mathrm{~g}=\mathbf{5 0 0 0} \mathrm{mg}$	$8000 \mathrm{mg}=8 \mathrm{~g}$
C	$12 \mathrm{l}=12000 \mathrm{ml}$	$\mathbf{1 0 0 1}=100 \mathbf{0 0 0 m l}$	$5500 \mathrm{ml}=5.5$	$10500 \mathrm{ml}=10.51$	$2.51=\mathbf{2 5 0}$ c	750cl $=7.5$
D	50 miles $\approx 80 \mathrm{~km}$	12 feet $\approx \mathbf{3 6 0} \mathrm{cm}$	$8 \mathrm{~m} \approx 320$ inches	5 inches $\approx 12.5 \mathrm{~cm}$	120 hours = $\mathbf{5}$ days	1 hour = $\mathbf{3 6 0 0}$ seconds

Gold Cards	Pythagoras	Blaise Pascal	Fibonacci	Archimedes	Alan Turing	Ada Lovelace
A	$500 \mathrm{~mm}=0.5 \mathrm{~m}$	$9000 \mathrm{~cm}=0.09 \mathrm{~km}$	$5.5 \mathrm{~km}=5500 \mathrm{~m}$	$2.5 \mathrm{~km}=250000 \mathrm{~cm}$	$8.6 \mathrm{~m}=\mathbf{0 . 0 0 8 6} \mathrm{km}$	$12 \mathrm{~m}=\mathbf{1 2 0 0} \mathrm{cm}$
B	$1 \frac{1}{4} \mathrm{~kg}=1250 \mathrm{~g}$	$5 \frac{1}{2} \mathrm{~g}=0.0055 \mathrm{~kg}$	$82000 \mathrm{~g}=82 \mathrm{~kg}$	$9 \frac{3}{4} \mathrm{~kg}=9750 \mathrm{~g}$	$2 \frac{1}{5} \mathrm{~g}=2200 \mathrm{mg}$	$9250 \mathrm{mg}=9.25 \mathrm{~g}$
c	$50 \mathrm{l}=\mathbf{5 0 0 0} \mathrm{cl}$	$10 \mathrm{cl}=100 \mathrm{ml}$	$3500 \mathrm{ml}=350 \mathrm{cl}$	$8 \frac{1}{2} \mathrm{l}=8500 \mathrm{ml}$	$65_{5}^{2}=640 \mathrm{cl}$	$825 \mathrm{cl}=8.25$
D	$\begin{aligned} & 1 \mathrm{~km} \approx \frac{5}{8} \text { or } 0.625 \\ & \text { miles } \end{aligned}$	$99 \mathrm{~cm} \approx 3.3$ feet	120 inches $\approx 3 \mathrm{~m}$	$60 \mathrm{~cm} \approx 24$ inches	1 week = 168 hours	$\begin{gathered} 72000 \text { seconds }=20 \\ \text { hours } \end{gathered}$

Regent Studies | www.regentstudies.com

Famous Mathematicians Top Maths Card Game Converting Units of Measure

Instructions

You will need a set of cards per team. Students should play in pairs, although they could play in threes to absorb odd numbers.

This game can be played with all 18 cards or with two of the sets of six. The bronze cards are the easiest, followed by silver, with gold being the most difficult.

The cards are dealt out between the players and placed face down in piles in front of each player. Player One picks up their first card. They calculate the values for A, B, C and D. They should choose a value and announce it; for example, 'C is 7 '.

The next player can now pick up their first card and then calculate their corresponding value; for example, ' C is 5 '. If a there is a third player, they would then have their turn. Whoever has the highest score wins the cards from the other players and puts them face down at the bottom of their pile. If the scores tied then each player keeps their own card. Player Two then picks up their uppermost card and calculates each value; play then continues in the same way, with each player taking a turn to go first.

The winner is the first person to win all the cards.
Students should check their partner's calculations after each turn. They should be encouraged to write their expressions and solutions in their books or on mini-white boards.

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Blaise Pascal

A	$100 \mathrm{~cm}=x \mathrm{~m}$
B	$1000 \mathrm{~g}=x \mathrm{~kg}$
C	$10 \mathrm{I}=x \mathrm{ml}$
D	1 foot $\approx x \mathrm{~cm}$

Bronze

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Fibonacci

A	$1 \mathrm{~km}=x \mathrm{~m}$
B	$3 \mathrm{~kg}=x \mathrm{~g}$
C	$3000 \mathrm{ml}=x \mathrm{l}$
D	$1 \mathrm{~m} \approx x$ inches

Bronze

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Bronze

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Archimedes

A	$1 \mathrm{~km}=x \mathrm{~cm}$
B	$10 \mathrm{~kg}=x \mathrm{~g}$
C	$6500 \mathrm{ml}=x \mathrm{l}$
D	1 inch $\approx x \mathrm{~cm}$

Bronze

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Ada Lovelace

A	$100 \mathrm{~m}=x \mathrm{~cm}$
B	$2000 \mathrm{mg}=x \mathrm{~g}$

C $500 \mathrm{cl}=x \mid$

D 300 seconds $=x$ minutes

Bronze

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Pythagoras

A	$50 \mathrm{~mm}=x \mathrm{~cm}$
B	$1.05 \mathrm{~kg}=x \mathrm{~g}$
C	$12 \mathrm{l}=x \mathrm{ml}$
D	50 miles $\approx x \mathrm{~km}$

Silver

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Silver

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Blaise Pascal

\mathbf{A}	$800 \mathrm{~cm}=x \mathrm{~m}$

B	$3 \mathrm{~g}=x \mathrm{~kg}$
C	$100 \mathrm{l}=x \mathrm{ml}$
D	12 feet $\approx x \mathrm{~cm}$

Silver

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Archimedes

\mathbf{A}	$5 \mathrm{~km}=x \mathrm{~cm}$
\mathbf{B}	$8.4 \mathrm{~kg}=x \mathrm{~g}$

C	$10500 \mathrm{ml}=x \mathrm{l}$
D	5 inches $\approx x \mathrm{~cm}$

Silver

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

$\mathbf{A} \quad 80 \mathrm{~mm}=x \mathrm{~cm}$

B	$5 \mathrm{~g}=x \mathrm{mg}$
C	$2.5 \mathrm{I}=x \mathrm{cl}$
D	120 hours $=x$ days

Silver

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Ada Lovelace
A $\quad 12 \mathrm{~m}=x \mathrm{~cm}$
B $8000 \mathrm{mg}=x \mathrm{~g}$
C 750cl $=x$ l

D 1 hour $=x$ seconds
Silver

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

A	$9000 \mathrm{~cm}=x \mathrm{~km}$
B	$5 \frac{1}{2} \mathrm{~g}=x \mathrm{~kg}$
C	$10 \mathrm{cl}=x \mathrm{ml}$
D	$99 \mathrm{~cm} \approx x$ feet
	Gold

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Fibonacci

A	$5.5 \mathrm{~km}=x \mathrm{~m}$
B	$82000 \mathrm{~g}=x \mathrm{~kg}$
C	$3500 \mathrm{ml}=x \mathrm{cl}$
D	120 inches $\approx x \mathrm{~m}$

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Archimedes

A	$2.5 \mathrm{~km}=x \mathrm{~cm}$
B	$9 \frac{3}{4} \mathrm{~kg}=x \mathrm{~g}$
C	$8 \frac{1}{2} \mathrm{l}=x \mathrm{ml}$
D	$60 \mathrm{~cm} \approx x$ inches

Gold

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

A $\quad 12 \mathrm{~m}=x \mathrm{~cm}$
B $9250 \mathrm{mg}=x \mathrm{~g}$

C $\quad 825 \mathrm{cl}=x \mathrm{l}$
D
72000 seconds $=x$ hours
Gold

Famous Mathematicians Top Maths Card Game: Converting Units of Measure

Unit Pricing and
Compound Measures

Speed,

 Distance and Time

Learning Objective

To use and apply the speed, distance and time formulae.

Success Criteria

- To calculate speed, distance or time using a formula triangle.
- To interpret worded questions involving speed, distance and time.
- To apply the formulae and convert between units of measure.

Converting Units of Measure Top Card Game

- Deal out the cards equally between players. Each player places their stack of cards face down in front of them.
- Player 1 - pick up your first card and calculate the value for A, B, C or D.
- Player 2 - pick up your first card and calculate the same value.
- Whoever has the highest score wins the card(s) from the other player(s) and puts them face-down at the bottom of their pile.
- If the scores are a tie then each player keeps their own card.
- Player 2 - pick up your next card and continue play.
- The winner is the first person to win all the cards.

Calculating Distance

Use the formula triangle to help.
Cover up what you want to find (in this case, the distance). The parts that are left show you how to calculate it.

Distance $=$ Speed \times Time

Example

50 mph for 3 hours. Calculate the distance.
$50 \times 3=150$ miles

Calculating Speed

Cover up speed. The parts that are left show you how to calculate it.

Speed $=\frac{\text { Distance }}{\text { Time }}$
To calculate the average speed of a journey, you divide the distance travelled by the time taken.

Example

2 hours to cover a distance of 5.8 km . Calculate the speed.

$$
\frac{5.8}{2}=2.9 \mathrm{~km} / \mathrm{h}
$$

Calculating Time

Cover up time. The parts that are left show you how to calculate it.

Time $=\frac{\text { Distance }}{\text { Speed }}$

Example
100 m travelled at a constant speed of $6.25 \mathrm{~m} / \mathrm{s}$. Calculate the time taken.
$\frac{100}{6.25}=16$ seconds

Your Turn - Section 1

Questions

Calculate the distance travelled in each journey:
a. 3 hours at 40 mph

Distance =

\qquad
Distance = \qquad miles
d. 5.25 hours at $50 \mathrm{~km} / \mathrm{h}$ Distance = \qquad
Distance = \qquad km
b. $55 \mathrm{~km} / \mathrm{h}$ for 3.5 hours Distance = \qquad
Distance = \qquad km
e. 30 mph for 20 minutes Distance = \qquad
Distance = \qquad miles
c. 4 seconds at $3 \mathrm{~m} / \mathrm{s}$

Distance = \qquad
Distance = \qquad m

Your Turn - Section 1

Answers

Calculate the distance travelled in each journey:
a. 3 hours at 40 mph

Distance $=\mathbf{3 \times 4 0}$
Distance $=\mathbf{1 2 0}$ miles
b. $55 \mathrm{~km} / \mathrm{h}$ for 3.5 hours

Distance $=55 \times 3.5$
Distance $=192.5 \mathrm{~km}$
d. 5.25 hours at $50 \mathrm{~km} / \mathrm{h}$

Distance $=\mathbf{5 . 2 5} \times \mathbf{5 0}$
Distance $=\mathbf{2 6 2 . 5} \mathrm{km}$
e. 30 mph for 20 minutes

Distance $=30 \times \frac{20}{60}$
Distance $=\mathbf{1 0}$ miles
c. 4 seconds at $3 \mathrm{~m} / \mathrm{s}$

Distance $=\mathbf{4 \times 3}$
Distance $=12 \mathrm{~m}$

Your Turn - Section 2

Questions

Calculate the average speed of each journey:
a. 150 miles in 5 hours Speed = \qquad Speed = \qquad mph
b. 120 km in 3 hours Speed = \qquad Speed = \qquad km/h
d. 87.5 miles in 3.5 hours Speed = \qquad Speed = \qquad mph
e. 9 km in 45 minutes Speed = \qquad Speed = \qquad km/h
c. 20 m in 4 seconds

Speed = \qquad Speed = \qquad m / s

Your Turn - Section 2

Answers

Calculate the average speed of each journey:
a. 150 miles in 5 hours

Speed $=\frac{150}{\mathbf{5}}$
Speed $=\mathbf{3 0} \mathrm{mph}$
b. 120 km in 3 hours

Speed $=\frac{\mathbf{1 2 0}}{\mathbf{3}}$
Speed $=\mathbf{4 0} \mathrm{km} / \mathrm{h}$
c. 20 m in 4 seconds

$$
\begin{aligned}
& \text { Speed }=\frac{\mathbf{2 0}}{\mathbf{4}} \\
& \text { Speed }=\mathbf{5 m} / \mathrm{s}
\end{aligned}
$$

d. 87.5 miles in 3.5 hours

Speed $=\frac{87.5}{3.5}$
Speed $=\mathbf{2 5} \mathrm{mph}$
e. 9 km in 45 minutes

Speed $=9 \div \frac{9}{45}$
Speed $=12 \mathrm{~km} / \mathrm{h}$

Your Turn - Section 3

Questions

Calculate the time taken for each journey:
a. 150 miles at 50 mph

Time $=$ \qquad -
Time $=$ \qquad hours
d. 5 miles at 50 mph

Time = \qquad
Time $=$ \qquad minutes
b. 75 km at $50 \mathrm{~km} / \mathrm{h}$

Time = \qquad -
Time $=$ \qquad hours
e. 1.5 km at $2 \mathrm{~m} / \mathrm{s}$

Time = \qquad
Time $=$ \qquad minutes
c. 25 m at $2 \mathrm{~m} / \mathrm{s}$

Time = \qquad
Time $=$ \qquad seconds

Your Turn - Section 3

Answers

Calculate the time taken for each journey:
a. 150 miles at 50 mph

Time $=\frac{\mathbf{1 5 0}}{\mathbf{5 0}}$
Time $=\mathbf{3}$ hours
b. 75 km at $50 \mathrm{~km} / \mathrm{h}$

Time $=\frac{\mathbf{7 5}}{50}$
Time $=\mathbf{1 . 5}$ hours
C. 25 m at $2 \mathrm{~m} / \mathrm{s}$

Time $=\frac{\mathbf{2 5}}{\mathbf{2}}$
Time $=\mathbf{1 2 . 5}$ seconds
d. 5 miles at 50 mph

Time $=\frac{\mathbf{5}}{\mathbf{5 0}} \times \mathbf{6 0}$
Time $=\mathbf{6}$ minutes
e. 1.5 km at $2 \mathrm{~m} / \mathrm{s}$

Time $=\frac{1500}{\mathbf{2}} \div \mathbf{6 0}$
Time $=\mathbf{1 2 . 5}$ minutes

Your Turn - Section 4

Questions

Complete the missing information in the table, include units of measure in your answers:

Speed	Distance	Time
70 mph		2 hours
	55 km	11 hours
$200 \mathrm{~km} / \mathrm{h}$		45 minutes
$0.5 \mathrm{~m} / \mathrm{s}$	350 cm	
	357.5 miles	5 hours 30 minutes
12 mph		2 hours 15 minutes

Your Turn - Section 4

Answers

Complete the missing information in the table, include units of measure in your answers:

Speed	Distance	Time
70 mph	$\mathbf{7 0 \times 2 = 1 4 0} \mathbf{~ m i l e s}$	2 hours
$\frac{\mathbf{5 5}}{\mathbf{1 1}}=\mathbf{5 k m} / \mathrm{h}$	55 km	11 hours
$200 \mathrm{~km} / \mathrm{h}$	$\mathbf{2 0 0} \times \frac{\mathbf{4 5}}{\mathbf{6 0}}=\mathbf{1 5 0 k m}$	45 minutes
$0.5 \mathrm{~m} / \mathrm{s}$	350 cm	$\frac{\mathbf{3 . 5}}{\mathbf{0 . 5}} \mathbf{7} \mathbf{7}$ seconds
$\frac{\mathbf{3 5 7 . 5}}{\mathbf{5 . 5}}=\mathbf{6 5 m p h}$	357.5 miles	5 hours 30 minutes
12 mph	$\mathbf{1 2 \times \mathbf { 2 . 2 5 } = \mathbf { 2 7 } \mathbf { ~ m i l e s }}$	2 hours 15 minutes

Worded Problems

Alexandra is taking a day trip to her grandma's house. She sets off at 9:15a.m. and rides her moped for 50 miles. She arrives at 11:45 hours.
What is her average speed for this journey?
Tackle worded problems by 'pulling out' the maths.
Write down what you know.

- distance travelled: 50 miles
- start time: 9:15a.m.
- finish time: 11:45a.m.

Write down what you need to find out.

Speed $=\frac{\text { Distance }}{\text { Time }}$
time taken: 2 hours 30 minutes $=2.5$ hours
speed $=\frac{50}{2.5}=20$
Remember to add the units to the answer.

$$
\text { speed }=20 \mathrm{mph}
$$

Your Turn - Worded Problems Section 1

Questions
For each of the following questions, calculate the average speed of the journey and state the unit of measure.
a. Jonti ran a distance of 200 m in a time of 40 seconds. What was Jonti's average speed?
b. Kevin cycled 35 km in 2 hours. How fast did he cycle?
c. Ms Patel took 3 hours and 30 minutes to drive a distance of 140 miles. What was her average speed for this journey?
d. An international train took 300 minutes to travel a distance of 850 km . Calculate the train's average speed for this journey in kilometres per hour.

Your Turn - Worded Problems Section 1

Answers

For each of the following questions, calculate the average speed of the journey and state the unit of measure.
a. Jonti ran a distance of 200 m in a time of 40 seconds. What was Jonti's average speed?
$\frac{200}{40}=5 \mathrm{~m} / \mathrm{s}$
b. Kevin cycled 35 km in 2 hours. How fast did he cycle?
$\frac{35}{2}=17.5 \mathrm{~km} / \mathrm{h}$
c. Ms Patel took 3 hours and 30 minutes to drive a distance of 140 miles. What was her average speed for this journey?
$\frac{140}{3.5}=40 \mathrm{mph}$
d. An international train took 300 minutes to travel a distance of 850 km . Calculate the train's average speed for this journey in kilometres per hour. 300
$\frac{300}{60}=5$ hours
$\frac{850}{5}=170 \mathrm{~km} / \mathrm{h}$

Your Turn - Worded Problems Section 2

Questions

For each of the following questions, calculate the distance travelled and state the unit of measure.
a. A coach travels at an average speed of 60 mph for 4 hours. How long does the journey take?
b. A car drives on a road for 2.5 hours at $50 \mathrm{~km} / \mathrm{h}$. How far did the car travel?
c. If a camel ran at a constant speed of $65 \mathrm{~km} / \mathrm{h}$ for 45 minutes, how far would you expect it to travel?
d. If a snail travelled at a constant speed of $0.05 \mathrm{~km} / \mathrm{h}$ for 3 minutes, how many metres would it crawl?

Your Turn - Worded Problems Section 2

Answers

For each of the following questions, calculate the distance travelled and state the unit of measure.
a. A coach travels at an average speed of 60 mph for 4 hours. How long does the journey take?
$\mathbf{6 0} \times \mathbf{4}=\mathbf{2 4 0}$ miles
b. A car drives on a road for 2.5 hours at $50 \mathrm{~km} / \mathrm{h}$. How far did the car travel?
$\mathbf{2 . 5} \times \mathbf{5 0}=\mathbf{1 2 5} \mathbf{k m}$
c. If a camel ran at a constant speed of $65 \mathrm{~km} / \mathrm{h}$ for 45 minutes, how far would you expect it to travel?
$\mathbf{6 5} \times \frac{\mathbf{4 5}}{\mathbf{6 0}}=\mathbf{4 8 . 7 5 \mathrm { km }}$
d. If a snail travelled at a constant speed of $0.05 \mathrm{~km} / \mathrm{h}$ for 3 minutes, how many metres would it crawl?
$\mathbf{0 . 0 5} \times \mathbf{1 0 0 0}=\mathbf{5 0} \mathbf{m} / \mathrm{h}$
$50 \times \frac{3}{60}=2.5 \mathrm{~m}$

Your Turn - Worded Problems Section 3

For each of the following questions, calculate the time taken Questions to complete the journey and state the unit of measure.
a. A car travels a distance of 30 miles at a speed of 15 mph . How long does the journey take?
b. Bob cycles a short distance of 450 metres at a constant speed of $20 \mathrm{~m} / \mathrm{s}$. How long does he cycle for?
c. A horse goes for a gallop and covers a distance of 1000 m . His average speed is $40 \mathrm{~km} / \mathrm{h}$. How many minutes does he gallop for?
d. Jamil and Karen go for a walk. They walk a distance of 5 miles at a speed of 3 mph . They stop for lunch for 1 hour then jog the same route back home at a speed of 8 mph . How long did their trip last? Give your answer in hours, minutes and seconds.

Your Turn - Worded Problems Section 3

For each of the following questions, calculate the time taken
Answers
to complete the journey and state the unit of measure.
a. A car travels a distance of 30 miles at a speed of 15 mph . How long does the journey take?
$\frac{30}{15}=2$ hours
b. Bob cycles a short distance of 450 metres at a constant speed of $20 \mathrm{~m} / \mathrm{s}$. How long does he cycle for?
$\frac{450}{20}=\mathbf{2 2 . 5}$ seconds
c. A horse goes for a gallop and covers a distance of 1000 m . His average
speed is $40 \mathrm{~km} / \mathrm{h}$. How many minutes does he gallop for?
$1000 \mathrm{~m}=1 \mathrm{~km}$
$\frac{1}{40} \times 60=1.5$ minutes
d. Jamil and Karen go for a walk. They walk a distance of 5 miles at a speed of 3 mph . They stop for lunch for 1 hour then jog the same route back home at a speed of 8 mph . How long did their trip last? Give your answer in hours, minutes and seconds.
$\frac{5}{3} \times 60=100$ minutes
$\frac{5}{8} \times 60=37.5$ minutes
$100+60+37.5=197.5$ minutes
$\frac{197.5}{60}=3.291 .$.
$0.291 . . . \times 60=17.5$
Total time $=3$ hours 17 minutes 30 seconds.

Exam Question

The travel graph below represents Ricky's cycle journey from his house to his cousin Janine's house to drop off a parcel and then cycling back home again.
a. Ricky stopped at a friend's house for breakfast. How long did he stop for?
b. How far did Ricky travel in total?
c. Based on the total amount of time he spent cycling, calculate Ricky's average speed for the journey. Give your answer correct to 1 decimal place.

Exam Question - Answers

The travel graph below represents Ricky's cycle journey from his house to his cousin Janine's house to drop off a parcel and then cycling back home again.
a. Ricky stopped at a friend's house for breakfast. How long did he stop for?

1 hour or 60 minutes
b. How far did Ricky travel in total?
$\mathbf{6 + 6} \mathbf{= 1 2 k m}$
c. Based on the total amount of time he spent cycling, calculate Ricky's average speed for the journey. Give your answer correct to 1 decimal place.
part a: 2km in 1 hour part b: 4km in 2.5 hours part c: 6 km in 3.5 hours.
total distance $=12 \mathrm{~km}$, total time cycling $=7$ hours
speed $=\frac{12}{7}$
speed $=1.7 \mathrm{~km} / \mathrm{h}$

> KS3 Unit Pricing and Compound Measures Speed, Distance and Time

Teaching Ideas

Learning Objective:

To use and apply the speed, distance and time formulae.

Success Criteria:

- To calculate speed, distance or time using a formula triangle.
- To interpret worded questions involving speed, distance and time.
- To apply the formulae and convert between units of measure.

Context

This is the 2nd lesson working with speed, distance and time. It can be used as a standalone lesson or to follow on from the practical one on the same topic. Students should have a sound understanding of how to convert between metric units.

Resources

PowerPoint
Speed, Distance and Time Worksheet 1
Speed, Distance and Time Worksheet 2
Top Card Instructions
Top Card Maths Game
Speed, Distance and Time Colour by Numbers

Starter

Converting Units of Measure Top Card Game

You will need a set of cards per team. Students should play in pairs, although they could play in threes to absorb odd numbers. The game can be played with all 18 cards or with two of the sets of six.
Students must calculate one of the values: A, B, C or D. The student with the highest value wins their opponent's card.
If you want this to be a teacher-lead activity, you could split the class into two teams and students could hold up the answer for their team's card on mini-whiteboards.
If students are struggling to identify whether they should multiply or divide, encourage them to visualise what they are converting. For example, 8 m can be visualised by the length of the classroom. You can multiply or divide 8 by 100 to obtain 800 cm or 0.08 cm .0 .08 cm is too small to be the length of a classroom so the correct answer must be 800 cm .

Main Activities

Calculating Distance, Speed and Time

Have students draw the distance, speed and time formula triangle in their books. They should practise covering the part of the triangle they want to find in order to find out what the corresponding calculation is. These slides demonstrate the three formulae with examples.
To calculate distance travelled, you multiply the speed by the time.
To calculate the average speed, you divide the distance by the time.
To calculate the time taken, you divide the distance by the speed.

Your Turn 1

Give the students time to practise calculating speed, distance and time. The same questions are also available on Speed, Distance and Time Worksheet 1. The answers for sections 1,2 and 3 are available on the slides. Use the working time as an opportunity to walk around the class and check students are applying the formulae correctly. Students may need reminding that if the units are not the same in the question as the answer then they will need to convert the units. Watch out for common misconceptions, such as students putting 0.20 for 20 minutes instead of $\frac{20}{60}$. Try to pre-empt this by asking how many minutes are in an hour.

Speed, Distance and Time Colour by Number worksheets are also available if students need further practice. They could also be assigned as homework activities.

Worded Problems

Encourage students to tackle worded problems by 'pulling out' the maths. Ask them to write down speed, distance and time for each question and then fill in what they know from the question. Remind them to check for units in their answers, converting any if necessary.

Your Turn 2

Give students time to attempt the worded problems and, again, circle the classroom to help where needed. The same questions are also available on Speed, Distance and Time Worksheet 2.

You may wish to remind the class about converting between hours and minutes. Emphasise using fractions of 60.

Plenary

Exam Question

A typical exam style question involving a travel graph. Explain to students that they need to read the information off the graph. They may need prompting to realise that you can calculate the speed by reading the distance and the time at set points on the graph. Ask them how they can calculate the speed from the graph. If necessary, remind them that speed is the distance travelled divided by the time taken.

Speed, Distance and Time Worksheet 1

Section 1

Calculate the distance travelled in each journey:
Distance = \qquad
Distance $=$ \qquad miles
b. $55 \mathrm{~km} / \mathrm{h}$ for 3.5 hours
Distance $=$ \qquad
Distance $=$ \qquad km
c. 4 seconds at $3 \mathrm{~m} / \mathrm{s}$

Distance $=$ \qquad
Distance $=$ \qquad m
d. 5.25 hours at $50 \mathrm{~km} / \mathrm{h}$

Distance $=$ \qquad
Distance $=$ \qquad km
(
e. 30 mph for 20 minutes

Distance $=$ \qquad
Distance $=$ \qquad miles

Speed $=$ \qquad
b. 120 km in 3 hours

Speed $=$ \qquad
Speed = \qquad km/h
a. 150 miles in 5 hours

Speed $=$ \qquad
Speed $=$ \qquad mph

Section 2

Calculate the average speed of each journey:

Sp路
c. 20 m in 4 seconds

Speed $=$ \qquad m / s
d. 87.5 miles in 3.5 hours

Speed $=$ \qquad
Speed $=$ \qquad mph
e. 9 km in 45 minutes

Speed $=$ \qquad
Speed $=$ \qquad km/h

Section 3

Calculate the time taken for each journey:
a. 150 miles at 50 mph
Time $=$ \qquad
Time $=$ \qquad hours
b. 75 km at $50 \mathrm{~km} / \mathrm{h}$
Time $=$ \qquad
e. 1.5 km at $2 \mathrm{~m} / \mathrm{s}$
Time $=$ \qquad
Time $=$ \qquad hours
Time $=$ \qquad minutes
d. 5 miles at 50 mph
Time = \qquad
Time $=$ \qquad minutes
c. 25 m at $2 \mathrm{~m} / \mathrm{s}$

Time $=$ \qquad
Time $=$ \qquad seconds

Section 4

Complete the missing information in the table. Include units of measure in your answers.

Speed	Distance	Time
70 mph		2 hours
	55 km	11 hours
$200 \mathrm{~km} / \mathrm{h}$	350 cm	45 minutes
$0.5 \mathrm{~m} / \mathrm{s}$	357.5 miles	5 hours 30 minutes
		2 hours 15 minutes
12 mph		

Speed, Distance and Time Worksheet 1 Answers

Section 1

Calculate the distance travelled in each journey:
a. 3 hours at 40 mph
Distance $=\mathbf{3 \times 4 0}$
Distance $=120$ miles
b. $55 \mathrm{~km} / \mathrm{h}$ for 3.5 hours

Distance $=\mathbf{5 5} \times 3.5$
Distance $=192.5 \mathrm{~km}$
c. 4 seconds at $3 \mathrm{~m} / \mathrm{s}$

Distance $=\mathbf{4 \times 3}$
Distance $=12 \mathrm{~m}$
d. 5.25 hours at $50 \mathrm{~km} / \mathrm{h}$

Distance $=5.25 \times 50$
Distance $=\mathbf{2 6 2 . 5} \mathrm{km}$
e. 30 mph for 20 minutes

Distance $=30 \times \frac{20}{60}$
Distance $=10$ miles

Section 2

Calculate the average speed of each journey:
a. 150 miles in 5 hours

Speed $=\frac{150}{5}$
Speed $=\mathbf{3 0} \mathrm{mph}$
b. 120 km in 3 hours

Speed $=\frac{120}{3}$
Speed $=40 \mathrm{~km} / \mathrm{h}$
c. 20 m in 4 seconds

Speed $=\frac{\mathbf{2 0}}{\mathbf{4}}$
Speed $=\mathbf{5} \mathrm{m} / \mathrm{s}$
d. 87.5 miles in 3.5 hours

Speed $=\frac{87.5}{3.5}$
Speed $=\mathbf{2 5} \mathbf{m p h}$
e. 9 km in 45 minutes

Speed $=9 \div \frac{45}{60}$
Speed $=12 \mathrm{~km} / \mathrm{h}$

Section 3

Calculate the time taken for each journey:
a. 150 miles at 50 mph
d. 5 miles at 50 mph
Time $=\frac{\mathbf{1 5 0}}{\mathbf{5 0}}$
Time $=\mathbf{3}$ hours
Time $=\frac{\mathbf{5}}{\mathbf{5 0}} \times \mathbf{6 0}$
Time $=\mathbf{6}$ minutes
b. $\begin{aligned} & 75 \mathrm{~km} \text { at } 50 \mathrm{~km} / \mathrm{h} \\ & \text { Time }=\frac{75}{50} \\ & \text { Time }=1.5 \text { hours }\end{aligned}$
e. 1.5 km at $2 \mathrm{~m} / \mathrm{s}$
Time $=\frac{\mathbf{1 5 0 0}}{\mathbf{2}} \div \mathbf{6 0}$
Time $=\mathbf{1 2 . 5}$ minutes
c. 25 m at $2 \mathrm{~m} / \mathrm{s}$

Time $=\frac{\mathbf{2 5}}{\mathbf{2}}$
Time $=12.5$ seconds

Section 4

Complete the missing information in the table. Include units of measure in your answers.

Speed	Distance	Time
70 mph	$70 \times 2=140$ miles	2 hours
$\frac{\mathbf{5 5}}{\mathbf{1 1}}=5 \mathrm{~km} / \mathrm{h}$	55 km	11 hours
$200 \mathrm{~km} / \mathrm{h}$	$\mathbf{2 0 0} \times \frac{\mathbf{4 5}}{60}=150 \mathrm{~km}$	45 minutes
$0.5 \mathrm{~m} / \mathrm{s}$	350 cm	$\frac{3.5}{\mathbf{0 . 5}}=\mathbf{7}$ seconds
$\frac{357.5}{\mathbf{5 . 5}=65 \mathrm{mph}}$	357.5 miles	5 hours 30 minutes
12 mph	$12 \times 2.25=\mathbf{2 7}$ miles	2 hours 15 minutes

Speed, Distance and Time Worksheet 2

Section 1

For each of the following questions, calculate the average speed of the journey and state the unit of measure.
a. Jonti ran a distance of 200 m in a time of 40 seconds. What was Jonti's average speed?
\qquad
\qquad
b. Kevin cycled 35 km in 2 hours. How fast did he cycle?
\qquad
\qquad
c. Ms Patel took 3 hours and 30 minutes to drive a distance of 140 miles. What was her average speed for this journey?
\qquad
\qquad
d. An international train took 300 minutes to travel a distance of 850 km . Calculate the train's average speed for this journey in kilometres per hour.
\qquad
\qquad

Section 2

For each of the following questions, calculate the distance travelled and state the unit of measure.
a. A coach travels at an average speed of 60 mph for 4 hours. How far did it travel?
\qquad
\qquad
b. A car drives on a road for 2.5 hours at $50 \mathrm{~km} / \mathrm{h}$. How far did the car travel?
\qquad
\qquad
c. If a camel ran at a constant speed of $65 \mathrm{~km} / \mathrm{h}$ for 45 minutes, how far would you expect it to travel?
\qquad
\qquad
d. If a snail travelled at a constant speed of $0.05 \mathrm{~km} / \mathrm{h}$ for 3 minutes, how many metres would it crawl?
\qquad
\qquad

Section 3

For each of the following questions, calculate the time taken to complete the journey and state the unit of measure.
a. A car travels a distance of 30 miles at a speed of 15 mph . How long does the journey take?
\qquad
\qquad
b. Bob cycles a short distance of 450 metres at a constant speed of $20 \mathrm{~m} / \mathrm{s}$. How long does he cycle for?
\qquad
\qquad
c. A horse goes for a gallop and covers a distance of 1000 m . His average speed is $40 \mathrm{~km} / \mathrm{h}$. How many minutes does he gallop for?
\qquad
\qquad
d. Jamil and Karen go for a walk. They walk a distance of 5 miles at a speed of 3 mph . They stop for lunch for 1 hour then jog the same route back home at a speed of 8 mph . How long did their trip last? Give your answer in hours, minutes and seconds
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Speed, Distance and Time Worksheet 2 Answers

Section 1

For each of the following questions, calculate the average speed of the journey and state the unit of measure.
a. Jonti ran a distance of 200 m in a time of 40 seconds. What was Jonti's average speed?

$$
\frac{200}{40}=5 \mathrm{~m} / \mathrm{s}
$$

b. Kevin cycled 35 km in 2 hours. How fast did he cycle?

$$
\frac{35}{2}=17.5 \mathrm{~km} / \mathrm{h}
$$

c. Ms Patel took 3 hours and 30 minutes to drive a distance of 140 miles. What was her average speed for this journey?
$\frac{140}{3.5}=40 \mathrm{mph}$
d. An international train took 300 minutes to travel a distance of 850 km . Calculate the train's average speed for this journey in kilometres per hour.
$\frac{300}{60}=5$ hours
$\frac{850}{5}=170 \mathrm{~km} / \mathrm{h}$

Section 2

For each of the following questions, calculate the distance travelled and state the unit of measure.
a. A coach travels at an average speed of 60 mph for 4 hours. How far did it travel?
$60 \times 4=240$ miles
b. A car drives on a road for 2.5 hours at $50 \mathrm{~km} / \mathrm{h}$. How far did the car travel?

$2.5 \times 50=125 \mathrm{~km}$

c. If a camel ran at a constant speed of $65 \mathrm{~km} / \mathrm{h}$ for 45 minutes, how far would you expect it to travel?
$65 \times \frac{45}{60}=48.75 \mathrm{~km}$
d. If a snail travelled at a constant speed of $0.05 \mathrm{~km} / \mathrm{h}$ for 3 minutes, how many metres would it crawl?
$0.05 \times 1000=50 \mathrm{~m} / \mathrm{h}$
$50 \times \frac{3}{60}=2.5 \mathrm{~m}$

Section 3

For each of the following questions, calculate the time taken to complete the journey and state the unit of measure.
a. A car travels a distance of 30 miles at a speed of 15 mph . How long does the journey take?

$$
\frac{30}{15}=2 \text { hours }
$$

b. Bob cycles a short distance of 450 metres at a constant speed of $20 \mathrm{~m} / \mathrm{s}$. How long does he cycle for?
$\frac{450}{20}=22.5$ seconds
c. A horse goes for a gallop and covers a distance of 1000 m . His average speed is $40 \mathrm{~km} / \mathrm{h}$. How many minutes does he gallop for?
$1000 \mathrm{~m}=1 \mathrm{~km}$
$\frac{1}{40} \times 60=1.5$ minutes
d. Jamil and Karen go for a walk. They walk a distance of 5 miles at a speed of 3 mph . They stop for lunch for 1 hour then jog the same route back home at a speed of 8 mph . How long did their trip last? Give your answer in hours, minutes and seconds
$\frac{5}{3} \times 60=100$ minutes
$\frac{5}{8} \times 60=37.5$ minutes
$100+60+37.5=197.5$ minutes
$\frac{197.5}{60}=3.291 \ldots$
$0.291 \ldots \times 60=17.5$
Total time $=3$ hours 17 minutes 30 seconds.

